翻訳と辞書 |
Uniformly convex space : ウィキペディア英語版 | Uniformly convex space In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. == Definition == A uniformly convex space is a normed vector space so that, for every there is some so that for any two vectors with and the condition : implies that: : Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the segment is short.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Uniformly convex space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|